\(\int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [489]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 43, antiderivative size = 163 \[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {a} (5 A+6 B+8 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 d}+\frac {a (5 A+6 B+8 C) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {a (A+6 B) \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d} \]

[Out]

1/8*(5*A+6*B+8*C)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)/d+1/8*a*(5*A+6*B+8*C)*sin(d*x+c)/d
/(a+a*sec(d*x+c))^(1/2)+1/12*a*(A+6*B)*cos(d*x+c)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/3*A*cos(d*x+c)^2*sin(d
*x+c)*(a+a*sec(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {4171, 4100, 3890, 3859, 209} \[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {a} (5 A+6 B+8 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{8 d}+\frac {a (5 A+6 B+8 C) \sin (c+d x)}{8 d \sqrt {a \sec (c+d x)+a}}+\frac {a (A+6 B) \sin (c+d x) \cos (c+d x)}{12 d \sqrt {a \sec (c+d x)+a}}+\frac {A \sin (c+d x) \cos ^2(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d} \]

[In]

Int[Cos[c + d*x]^3*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(Sqrt[a]*(5*A + 6*B + 8*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(8*d) + (a*(5*A + 6*B + 8*
C)*Sin[c + d*x])/(8*d*Sqrt[a + a*Sec[c + d*x]]) + (a*(A + 6*B)*Cos[c + d*x]*Sin[c + d*x])/(12*d*Sqrt[a + a*Sec
[c + d*x]]) + (A*Cos[c + d*x]^2*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3890

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[a*Cot[e
 + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[a*((2*n + 1)/(2*b*d*n)), Int[Sqrt[a + b
*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -2
^(-1)] && IntegerQ[2*n]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 4171

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Dist[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m -
b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 -
 b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {A \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {\int \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \left (\frac {1}{2} a (A+6 B)+\frac {3}{2} a (A+2 C) \sec (c+d x)\right ) \, dx}{3 a} \\ & = \frac {a (A+6 B) \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {1}{8} (5 A+6 B+8 C) \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \, dx \\ & = \frac {a (5 A+6 B+8 C) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {a (A+6 B) \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {1}{16} (5 A+6 B+8 C) \int \sqrt {a+a \sec (c+d x)} \, dx \\ & = \frac {a (5 A+6 B+8 C) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {a (A+6 B) \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}-\frac {(a (5 A+6 B+8 C)) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 d} \\ & = \frac {\sqrt {a} (5 A+6 B+8 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 d}+\frac {a (5 A+6 B+8 C) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {a (A+6 B) \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.38 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.93 \[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\left (C \left (\text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right )+\cos (c+d x) \sqrt {1-\sec (c+d x)}\right )+2 B \operatorname {Hypergeometric2F1}\left (\frac {1}{2},3,\frac {3}{2},1-\sec (c+d x)\right ) \sqrt {1-\sec (c+d x)}+2 A \operatorname {Hypergeometric2F1}\left (\frac {1}{2},4,\frac {3}{2},1-\sec (c+d x)\right ) \sqrt {1-\sec (c+d x)}\right ) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{d \sqrt {1-\sec (c+d x)}} \]

[In]

Integrate[Cos[c + d*x]^3*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

((C*(ArcTanh[Sqrt[1 - Sec[c + d*x]]] + Cos[c + d*x]*Sqrt[1 - Sec[c + d*x]]) + 2*B*Hypergeometric2F1[1/2, 3, 3/
2, 1 - Sec[c + d*x]]*Sqrt[1 - Sec[c + d*x]] + 2*A*Hypergeometric2F1[1/2, 4, 3/2, 1 - Sec[c + d*x]]*Sqrt[1 - Se
c[c + d*x]])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(d*Sqrt[1 - Sec[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(508\) vs. \(2(143)=286\).

Time = 1.90 (sec) , antiderivative size = 509, normalized size of antiderivative = 3.12

method result size
default \(\frac {\left (8 A \cos \left (d x +c \right )^{3} \sin \left (d x +c \right )+15 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+10 A \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )+18 B \,\operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+12 B \sin \left (d x +c \right ) \cos \left (d x +c \right )^{2}+24 C \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+15 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+15 A \cos \left (d x +c \right ) \sin \left (d x +c \right )+18 B \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+18 B \cos \left (d x +c \right ) \sin \left (d x +c \right )+24 C \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+24 C \cos \left (d x +c \right ) \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{24 d \left (\cos \left (d x +c \right )+1\right )}\) \(509\)

[In]

int(cos(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/24/d*(8*A*cos(d*x+c)^3*sin(d*x+c)+15*A*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/
(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+10*A*cos(d*x+c)^2*sin(d*x+c)+18*B*arctanh(sin(d*x+c)/(cos(d*x+c
)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)+12*B*sin(d*x+c)*cos(d*x
+c)^2+24*C*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(
1/2))*cos(d*x+c)+15*A*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d
*x+c)+1))^(1/2))+15*A*cos(d*x+c)*sin(d*x+c)+18*B*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*
x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+18*B*cos(d*x+c)*sin(d*x+c)+24*C*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)
*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+24*C*cos(d*x+c)*sin(d*x+c))*(a*(1+sec(d
*x+c)))^(1/2)/(cos(d*x+c)+1)

Fricas [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 364, normalized size of antiderivative = 2.23 \[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {3 \, {\left ({\left (5 \, A + 6 \, B + 8 \, C\right )} \cos \left (d x + c\right ) + 5 \, A + 6 \, B + 8 \, C\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (8 \, A \cos \left (d x + c\right )^{3} + 2 \, {\left (5 \, A + 6 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, A + 6 \, B + 8 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{48 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {3 \, {\left ({\left (5 \, A + 6 \, B + 8 \, C\right )} \cos \left (d x + c\right ) + 5 \, A + 6 \, B + 8 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (8 \, A \cos \left (d x + c\right )^{3} + 2 \, {\left (5 \, A + 6 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, A + 6 \, B + 8 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{24 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \]

[In]

integrate(cos(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/48*(3*((5*A + 6*B + 8*C)*cos(d*x + c) + 5*A + 6*B + 8*C)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt
((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(8
*A*cos(d*x + c)^3 + 2*(5*A + 6*B)*cos(d*x + c)^2 + 3*(5*A + 6*B + 8*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)
/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d), -1/24*(3*((5*A + 6*B + 8*C)*cos(d*x + c) + 5*A + 6*B + 8*C)
*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (8*A*cos(d*x +
c)^3 + 2*(5*A + 6*B)*cos(d*x + c)^2 + 3*(5*A + 6*B + 8*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)
)*sin(d*x + c))/(d*cos(d*x + c) + d)]

Sympy [F(-1)]

Timed out. \[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**3*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3770 vs. \(2 (143) = 286\).

Time = 0.77 (sec) , antiderivative size = 3770, normalized size of antiderivative = 23.13 \[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \]

[In]

integrate(cos(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/96*((4*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x
 + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(3/4)*(cos(3/2*arctan2(sin(2/3*arcta
n2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(3*d*x
+ 3*c) - (cos(3*d*x + 3*c) - 1)*sin(3/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*
arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a) + 6*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x +
 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3
*d*x + 3*c))) + 1)^(1/4)*((sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 5*sin(1/3*arctan2(sin(3*d*x
+ 3*c), cos(3*d*x + 3*c))))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arct
an2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 3*cos
(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - 4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3
*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a) + 15*sqrt(a)*(arctan2(-(cos
(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 +
 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x
+ 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(1/3*arctan2(sin(3*d
*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))), (cos
(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 +
 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*
x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3
*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))) + 1)
- arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(sin(2/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(1/3*
arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*ar
ctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)
)) + 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arctan2(sin(3*d*x +
 3*c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan
2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*ar
ctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)
)) + 1))) - 1) - arctan2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x +
 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*sin(1/2*arctan
2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) +
 1)), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x +
3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(2/3*arctan2(s
in(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + 1) + arctan2
((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))
)^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*
d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)), (cos(2/3*arctan2(s
in(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - 1)))*A + 6*(2*(cos(2*d*x + 2*c)^2 +
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(
2*d*x + 2*c) - (cos(2*d*x + 2*c) - 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(2*d*x + 2*c))
*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + ((cos(2*d*x + 2*c) - 2)*cos(1/2*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c))) + sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - cos(2*d*x
 + 2*c) + 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 3*sqrt(a)*(arctan2((cos(2*d*x
 + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c
) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(
sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - arctan2(
(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(
sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x
 + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x +
 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1)))*B + 24
*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c) + 1))*sin(d*x + c) - (cos(d*x + c) - 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
+ 1)))*sqrt(a) + sqrt(a)*(arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(c
os(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos
(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x +
2*c), cos(2*d*x + 2*c) + 1))) + 1) - arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2
(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)
^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(s
in(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x
 + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x +
 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + arctan
2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1)))*C)/d

Giac [F]

\[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {a \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{3} \,d x } \]

[In]

integrate(cos(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int {\cos \left (c+d\,x\right )}^3\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \]

[In]

int(cos(c + d*x)^3*(a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

int(cos(c + d*x)^3*(a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2), x)